Download complete project materials on Groundwater Development For Portable Water Supply from chapter one to five with references and abstract.
CLICK HERE TO DOWNLOAD THE COMPLETE MATERIAL (CHAPTER 1 -5)
PASS 2024 UTME WITHOUT STRESS:- 👉 DOWNLOAD and PRACTICE with 2023 UTME CBT APP 📱👈
CLICK to DOWNLOAD NOW.:- 👉 PASS Your POST UTME by Downloading Your School's Post UTME Past Questions and Answers 📱👈
ABSTRACT
Groundwater hydrology may be defined as the science of the occurrence distribution, and movement of water below the surface of the earth. Geochydrology has an identical connotation, and hydrogeology differs only by its greater emphasis on geology. Utilization of groundwater dates from ancient times, although an understanding of the occurrence and movement of subsurface water as part of the hydrologic cycle has come only relatively recently.
SCOPE:
Groundwater referred to without specification is commonly understood to mean water occupying all the voids within geologic stratum. This saturated zone should be distinguished from an unsaturated, or earation zone where voids are filled with water and air.
Water contained in saturated zone is important for engineering work, geologic studies and water supply development consequently, the occurrence of water in this zones will be emphasized here. Unsaturated zone a re usually found above saturated zones and extend uquad to the ground surface.
Because this water includes soil masture within the root zone, it is a major concern for agriculture, binary, and soil science. No rigid demarcation of water between the two zones is possible, for they possess an interdependent boundary and water can move from owe zone to the other in either direction. The interrelationships are described more in some higher hydrogeology texts.
TABLE OF CONTENTS
CHAPTER ONE
1.0 Historical background and groundwater theories
1.1 Water theories
1.2 Recent centuries
CHAPTER TWO
2.0 Importance of groundwater
2.1 Groundwater in the hydrologic cycle
2.2 Occurrence of groundwater
2.3 Rock properties affecting groundwater
2.4 Vertical distribution of groundwater
2.5 Types of aquifers
CHAPTER THREE
3.0 Searching/exploration of groundwater
3.1 Methods of groundwater exploration
3.2 Groundwater basin investigation
3.3 Data collection and fieldwork
CHAPTER FOUR
4.0 Drilling for groundwater (wells)
4.1 Test whole and well logs
4.2 Methods for drilling shallow wells
4.3 Methods for drilling deep wells
4.4 Quality of groundwater
4.5 Measures of water quality
4.6 Water quality coterie
CHAPTER FIVE
5.0 Completion of wells
5.1 Well development
5.2 Protection of wells
5.3 Well rehabilitation
5.4 References
CHAPTER ONE
HISTORICAL BACK GROUND AND GROUND WATER THEORIES
Groundwater development dates from ancient times the Old Testament contains numerous references to groundwater, springs, and wells, other that dug wells, groundwater in ancient times we supplied from horizontal wells known as QAUNATS.
These persist to the present day and can be found in a band across the regions of the South Western Asia and North Africa extending from Aghanistan to Morocco. A cross section a long a qanat ie shown in fig 1.1 typically, a gently sloping tunnel dug through alluvial material leads water by gravity flow beneath the water table at its upper end to a ground.
A vertical cross section along a qanat surface outlet and irrigation canal at its lower end. Vertical shafts dug at closely s paced intervals provide access to the tunnel. Qanats are laboriously hand constructed by skilld workers employing techniques that date back 3000 years.
Iran possesses the greatest concentration of qanats; here some 22,000 qanats supply 75 percent of all water used in the country. Lengths of qanats extend up to 30km, but most are less than 5km. The depth of the qanat mother well (see fig 1.1) ie normally less than 50m, but instances of depth exceeding 250m have been reported. Discharge of Qantas varies. Seasonally with water table fluctuations and seldom exceed 100m3/hr.
GROUNDWATER THEORIES
Utilization of groundwater greatly preceded understanding of its origin, occurrence, and movement. The writing of Greek philosophers to explain origins of springs and groundwater contain theories ranging from fantasy to nearly correct accounts.
As late as the seventeenth century it was generally assumed that water emerging from springs could not be derived from rainfall, for it was believed that the quantity was in adequate and the earth too impervious to permit penetration of rain water for below the surface.
Thus, early Greek philosophers such as Homer, Thates and Plato hypothesized that springs were formed by seawater. Conducted through subterranean channels below the mountains, then Aristotle suggested that air enters cold dark caverns under the mountains where it condenses into water and contributes to springs.
The Roman philosophers, including Seneca Pliny, followed the Greek ideas and contributed little to the subject. An important step forward, however was made by the Roman architect Vitnvius he explained the now accepted infiltration theory that the mountains receive large amounts of rain that percolate through the rock strata and emerge at their base to form streams.
The Greek theories persisted through the Middle Ages with no advances until the end of the Renaissance. The French Poffer and Philosopher Bernard Palissy (1510 – 1589) reiterated the infiltration theory in 1580, but his teachings were generally ignored.
The German astronomer Johannes Kepler (1571 – 1630) was a man of strong imagination, who likened the earth to a huge animal that takes in water of the ocean, digests and assimilates it, and discharges the end products of these physiological processes as groundwater and springs. The seawater theory of the Greeks, supplemented by ideas of vapourizaton and condensation processes within the earth, was restated by the French Philosopher Rene’ Descarfes (1596 – 1650).
A clear understanding of the hydrologic cycle was achieved by the latter part of the seventeenth century. For the first time theories were based on observations and quantitative data. Three European countries made notable contributions, although others contributed to and supported these advances. Pierre Perrault (1611 – 1680) and estimated runoff of the upper seing drainage basin.
He reported in 1674 that precipitation on the basin was about six times the river discharge, thereby demonstrating false the early assumption of inadequate rainfall. The French Physicist Edme Mariotte (1620 – 1684) made measurements of the same of paris and confirmed paraults work.
His publication appeared in 1686, after his death, and contained factual data strongly supported the infiltration theory. Meinzer once stated. Mariotte probably deserves more than any other man the distinction of being regarded as the founder of groundwater hydrology, perhaps I should say the entire science of hydrology”.
CLICK HERE TO DOWNLOAD THE COMPLETE MATERIAL (CHAPTER 1 -5)
>GUARANTTEE|:| Score 280 Above in 2024 UTME👉 DOWNLOAD FREE JAMB CBT APP HERE:.: GURRANTTEE Score 280 Above in 2022 UTME👉 DOWNLOAD FREE JAMB CBT APP HERE 📱👈WISH TO STUDY & LIVE in UK?:- STUDY, WORK AND LIVE IN the UK Application Form NOW OUT. Call 08030447894